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Under many conditions, short-range interparticle forces may be simulated by hard cores. The excluded-
volume condition which this implies is equivalent to a single restriction upon the microscopic pair distribu
tion. A short-range nonsingular equivalent potential plays a dominant role in this formulation, and its precise 
value depends upon the approximation used for the remaining long-range forces. A few of these approxima
tions are examined; they yield simplifications of well-known integral equations in the theory of fluids. Possible 
perturbation solutions are investigated. For example, the corrections to plasma distributions due to short-
range cores can be found in this fashion. The method is generalized by using a single condition on the mean 
radial distribution, permitting application to quantum mechanics, to mixtures, and to external forces. 
The special case of the Bose hard-sphere fluid is considered. 

I. INTRODUCTION 

ALARGE number of perturbation-type methods are 
available1 for analyzing the properties of many-

body systems in thermal equilibrium when the inter
action forces are sufficiently weak. However, effective 
criteria for sufficient weakness are lacking, and one 
finds very often that a comparatively naive approach 
based self-consistently upon some model yields em
pirically far better results. The types of forces which one 
meets with in practice, weak long range together with 
strong short range, would in fact appear to possess a 
built-in unsuitability with respect to formal and un
motivated expansion procedures. Fortunately, tech
niques do exist for taking advantage of approximations 
specifically designed for weak long-range forces to in
clude short-range repulsion as well, when the repulsion 
is of the hard-core variety. It is the purpose of this 
paper to indicate how this insertion of hard-core in
teractions may be carried out. 

In Sec. II, we discuss the extent to which simulation 
of strong short-range forces by hard cores is reasonable. 
This is followed in Sec. I l l by development of the princi
pal technique for replacing hard cores by approximation-
dependent classical equivalent potentials. Section IV 
applies these results in principle to a few approximation 
methods, for which practical expansions are presented 
in Sec. VI which allows extension to quantum me
chanics, mixtures, etc. This is then applied in Sec. VII 
to the special case of the hard-core Bose ground state. 

II, APPEARANCE OF HARD CORE 

Let us consider a system in thermal equilibrium at a 
sufficiently high temperature that explicit quantum 
many-body effects can be neglected. Nonetheless, the 

interaction between any two particles is basically 
quantum mechanical and can only be interpreted as an 
equivalent classical potential. Of course, the tempera
ture must be low enough at the given density that the 
coordinates used to describe each particle are sufficient, 
i.e., that no further internal degrees of freedom are 
excited. Consider now a pair of particles with no bound 
state, as is often the case in atom-atom interactions. 
Suppose further that each is sufficiently massive that 
the uncertainty principle effectively does not apply to 
its center of mass [the thermal de Broglie wavelength 
\=(h/2mkT)1/2 is very small]. The classical potential 
is then the energy with respect to infinite separation, 
of the pair ground state with centers of mass fixed. This 
generally results2 in a short-range highly repulsive 
(Coulomb plus exchange) potential together with long-
range Van der Waals-type forces. For light particles, 
such as free electrons, interacting via long-range forces 
alone, X should be small in comparison with mean 
separation: p1/3X<l for density p. Then the true poten
tial attains classical significance. 

In the presence of pair bound states, as in ion-
electron interaction, one can proceed by insisting that 
the equivalent potential reproduce the radial distribu
tion which the true quantized pair exhibits at tempera
ture T. In other words, switching to relative coordinates, 
we require 

( l /7)*-* ( r ) = E l**(r) I V W n / 2 r t (2.1) 

for volume V and temperature T=l/kP, X) denoting 
both summation and integration. The qualitative char
acter of v(r) is a function principally of the magnitude 
of r. We first note that the WKB contribution to the 
continuum part of (2.1) coincides with the classical 
evaluation [thus, for example p(x)o:l/p(x;E) in one 
dimension for both microcanonical and WKB]; both 

* Supported in part by the U. S. Atomic Energy Commission 
Contract No. AT(30-1)-2582. 

1 See, e.g., E. Meeron, J. Math. Phys. 1, 192 (1960). 

2 See, e.g., J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, 
Molecular Theory of Gases and Liquids (John Wiley & Sons, Inc., 
New York, 1954), p. 1065. 
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yield, for a basic interaction vo(t), 

e-Wdl NoO) -E )dEdp 
o \2m J 

II e-^E+v2/^8Zvo(t)-EldEdj) 
—pz/2m 

= g-pvQ 'i 
J p2/2m>—vo(r) 

e-0pV2mdp 

s r ^ w ( * A ) ' , (2-2) 

where 00*00 = floOO when ^0(r) >0, but is quenched when 
v0 tries to descend below zero. Hence, simplifying to a 
single bound state, (2.1) becomes 

(l/V)e~^ = ^Q(r)2e~^+\~~de~^^)/(V\~s), 
or 

pv(r) = ~ln(*r^*<r>+XWr) V**°). (2.3) 

If fl0(r) has an inner repulsive (Coulomb plus exchange) 
region, then <£0 is exponentially small there and v=\po. 
When vo becomes negative, v0*^0, and v(r) = Eo~fi~x 

Xln(XVo2), an effective trapping potential, but generally 
> — IE01. Finally, at long range, if ^ is of range /, one 
has i^(r)2M~3exp[—(2/&)(2w|£0|)V], so that again 
the regime v=v0 takes over for 

r> (|8£o)*X+3X ln[(X/0/(/3£o)*]. 

In general, then, classical potentials of interest will 
have long-range attractive or repulsive tails. Except for 
the case of electron-proton interaction, an attractive 
tail is always accompanied by a strong (temperature-
dependent) short-range repulsion. It is convenient to 
provide still another equivalence, more in the nature of 
an idealization, and this is to replace the repulsive core 
by a rigid core of infinite amplitude but finite range a. 
The nature of the equivalence is determined by the pro
jected use, but matters are particularly simple if we are 
interested in thermodynamics, e.g., equation of state of 
a field. Here we need only recall3 that under a change of 
internal potential 8v the Helmholtz free energy is 
changed by 

8F--
• / 

pp / g(r)e^8(e~^-l)dr, (2.4) 

where g(r) is the radial distribution function. Hence a 
tail plus repulsive short-range v is replaceable by a hard 
core plus tail v provided that 

|(r) exp|>(r)]{exp[-/3f;(r)]-l}Jr 

f(r) exp|j3f;(r)]{expC-^(r)]-l}rfr, (2.5) 

a self-consistent determination of the core radius. 

III. FUNDAMENTAL RELATION 

Suppose then that a classical fluid, which at this time 
will be taken as a single component comprised of point 
particles, is interacting via a long-range nonsingular 
potential 0(r) augmented by a hard-core repulsion 
</>hC(r) of range a: 

0hc(r)=°°, r<a 
<£hc(r) = 0, r>a. 

(3.1) 

Uniformity is to be invoked by placing the system in a 
periodic box of volume V. We desire to compute the 
thermodynamic properties and distribution functions 
in thermal equilibrium for the combined potential. As is 
well known, the two-body distribution function de
scribes all of equilibrium statistical mechanics. Our 
problem now becomes that of taking into account the 
very strong hard-core potential, but doing it in such a 
way that methods appropriate for weak long-range po
tentials can be used. 

For the hard-core potential of (3.1) in an AT-particle 
system, the normalized A -̂body Gibbs distribution4 

vanishes whenever cores penetrate: 

If PAT(XI,« • -Xtf) 

= e3q){-j8E<>£*(x*--xJ)+^hc(xi--xi)]}/Z, 

p,v=0 when any (x»—Xy) < a, (3.2) 

and, consequently, the lower order distributions vanish 
as well. In particular, if ( ) denotes expectation, 

p2(x,y) = <E 8(xi-x)8(xj-y)) 

= 0 if | x -y |<a . 
(3.3) 

Conversely, if we define the microscopic pair distribu
tion function 

p2(x,y)^E 8(xi-x)8(xj-y), (3.4) 

then the hard-core factor exp[—/3J2i>j <£hc(x—Xy)] in 
pjv can be dropped if we adopt the restriction on con
figuration space that 

piv=0 unless p2(x,y) = 0 
whenever |x—y|<a. (3.5) 

A brief way of imposing the excluded volume condition 
(3.5) is to introduce a test function W(x) which satisfies 

W(x)>0 for x<a, 
= 0 for x>a. 

(3.6) 

3 J. L. Lebowitz and J. K. Percus, Phys. Rev. 122,1675 (1961). 

Then clearly, (3.5) is equivalent to 

p i V-0 unless / p2(x,y)W(x-y)dxdy~Q. (3.7) 

4 See, e.g., K. Huang, Statistical Mechanics (John Wiley & Sons, 
Inc., New York, 1963), p. 297. 
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Since (3.7) may be achieved by appending a Kronecker 
8 function (unity at vanishing argument), we conclude 
that the expectation of any quantity Q in the ensemble 
interacting via <£+<£hc can also be expressed as 

< C W = (Q*KT( fP2(x,y)W(x-y)dxdy\y / 

(*J^ (fa(xj)W(x-y)dxdy)y (3.8) 

a ratio of expectations over the tail potential interaction 
alone. But if we use the representation 

1 r* 
8KT(Z)= Km — / e&'ds, 

and observe that 

(3.9) 

/ 
h(x,y)W(x-y)dxdy=j: PF(x-xy), 

so that 

pN(xi,- • -XAT)0 expli(3s / p2(x,y)W(x—y)dxdy) 

= PN\Xi,' ' ' XN)<j,_2iswZ<j>-2isw/Z<f> , (3.10) 

(3.8) also achieves the more transparent form 

((?)0+*he= l i m / (Q)ci>-2iswZ^2iswds / 

S -oo J_s I 
Z<f,-2i8wds. (3.11) 

It is tempting to evaluate (3.11) by steepest descent,5 

but first the integrands must be found. For this pur
pose, when the "potential" <j>—2isW no longer has a 
hard-core singularity, we can utilize our favorite 
superior approximation for weak long-range forces. 
Whatever that is, it will have the consequence6 that 
(consistently indicating results of the approximation by 
bars) 

Z^isw^expi—NfiZ^isw), (3.12) 

where the free energy per particle $=F/N remains con
stant as N—> co at fixed mean density p. Hence, if 
^4>-2%sw has saddle points in the complex s plane, with 
that one of minimum real part at s=% iso, an expansion 
of (3.11) about s=%is0 becomes exact as N —-><*>. Under 
these circumstances, (3.11) reduces simply to 

(3.13) 

with the interpretation that exact expectations with 
5 See e.g., P. M. Morse and H. Feshbach, Theoretical Physics 

(McGraw-Hill Book Company, Inc., New York, 1953), p. 434. 
6 See, e.g., H. Callen, Thermodynamics (John Wiley & Sons, 

Inc., New York, 1960), p. 98, 

potential </>+<£hC are to be computed as approximate ex
pectations with potential <£+$'. 

The effective hard-core potential ^=SQW is not at all 
arbitrary, but is determined by the approximation 
made. Indeed, the condition that 3>„2*w have a saddle 
point at all is not trivial. We require dF <i+80w/ds o=0; 
by explicit differentiation, | (X^y SoW(xi—Xj))^.8Qw=09 

or J%p2(x,y)<f,+(f>>(t>(x—y)dxdy=Q. In a uniform system, 
p2(x,y)=p2(£--y), so that 

p2(r)w^'(r)dr==0. (3.14) 

Since <//>0 inside the core and p2>0 always, Eq. (3.14) 
is not a single condition but a global one: cjy'—SoW must 
be chosen so that the pair distribution p2 resulting from 
the approximation [i.e., from (3.13)] vanish inside the 
core. In other words, assembling (3.8), (3.13), and (3.14) 
and defining 

*(r) = p2(r)/ps, (3.15) 

the result of inserting a hard-core interaction <£hc 
into a system with interparticle potential <f> is the 
approximation 

g( r )<M-0 h o — <7(r)<H-<£' > 

where 
r<a: g(r) = 0, *'(r)>0', 
r>a: 4>'0O = O. 

(3.16) 

Equations (3.16) will generally determine the effective 
hard core <j>' uniquely, the particular form depending, of 
course, on the basic approximation hidden in the bar 
notation. The basic approximation is designed with the 
tail <j> in mind. As it improves, the saddle point s0 —>°° 
for any acceptable W of (3.6); thus in this limit, <j> 
coincides with </>hc, as it must. It is to be noted that if 
the basic approximation itself produces a g vanishing 
inside the core when the true potential <£+</>hc is used, 
(3.16) is solved by <£' = </>hc, and our method is powerless 
to effect further improvement. 

IV. SOME EXAMPLES 

The prototype approximation for very long-range, 
e.g., Coulomb forces is the Debye-Hiickel equation,7 

which itself can be simplified in several ways. It arises 
from the fact that the one-body density when a particle 
is fixed at y is given by 

p(x) = pg(x-y), (4.1) 

but is also given approximately by the Boltzmann factor 
for the average excess potential acting at x: 

(x) = 0 (x -y )+ p(*)4>(x-*)da+K', 

p(x) = p«r%av(x). 
(4.2) 

7 See, e.g., R. H. Fowler and E. A. Guggenheim, Statistical 
Thermodynamics (Cambridge tJniversity Press, Cambridge, 
England, 1939), p. 390? 
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Combining (4.1) and (4.2) leads to the desired 

g(x-y;0) = JT{exp[-/30(x-y)]} 

X \ exp 
' - * / • 

g(z-y;<t>)4>(x-z)dz\\ (4.3) ]) 
with normalization constant K=exp[fipJt<l)(z)dz2y so 
that g—>1 asymptotically. Interestingly, (4.3) cannot 
be used with (3.16) because it will never create a g 
vanishing inside the hard core for any effective $+<£'. 

Suppose, however, that g— 1 is small. Then taking the 
logarithm of (4.3) and linearizing, 

g ( x - y ; 0 ) - l = - 0 0 ( x - y ) 

-pPj\j(*-y;*)-i>(x-*)<fe, (4.4) 

the linearized Debye-Hiickel approximation. A con
siderably more convenient representation is in terms of 
the direct correlation function c of Ornstein and 
Zernike,8 which is defined by the integral relation 

(x) = l+c(x)+p h-y)(*(y)-i)<*y, (4.5) 

equivalent to an algebraic relation between Fourier 
coefficients, 

C k = ( g - l V ( l - p ( g - l ) k ) - (4.5') 

Equation (4.4) then reduces simply to 

*(r;*)=-/fy(r). (4.6) 

Consequently, on inserting a hard core, our approxi
mation (3.16) becomes c(r)=— /3<£(r) —j80'(r) where 
<£'(r) = 0 for r>a, which we may write as 

c(r)=/30(r) for r>a, 

g(r) = 0 for r<a. 
(4.7) 

For no tail at all, $=0, (4.7) simplifies to c(r) = 0 for 
r>a, g(r) = 0 for r<a, and is thus identical with 
the hard sphere Percus-Yevick (PY) equation, whose 
accuracy has been well attested to.9 More generally, 
(4.7) bears a close similarity both to the PY equation.10 

c(r) = (l-e**<r>)g(r) for r>a, 

g(r) = 0 for r<a 

and the Broyles-Sahlin equation11 

c(t) = c)Jr)-M>(t). 

(4.8) 

(4.9) 

For potentials which become weakly infinite at the 

8 L. S. Ornstein and F. Z. Zernike, Proc. Acad. Sci. Amsterdam 
17, 793 (1914). 

9 A. A. Broyles, J. Chem. Phys. 35, 493 (1961) and seq. 
10 J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958). 
11 A. A. Broyles and H. Sahlin, and D. D. Carley, Phys. Rev. 

Letters 10, 319 (1963). 

origin, such as the Coulomb, the linearized Debye-
Hiickel equation (4.4) has the unfortunate trait of pro
ducing a large negative g at the origin. However, an 
infinite potential is not as potent as this linearization 
indicates, and it may be shown that a suitable ad
justment is to replace — £0 by the Mayer / factor 
/(r;0) = er**Cr)_i. Thus, (4.7) is replaced by 

c(r) = er**<'>-l for r>a 

g(r) = 0 for r<a, 
(4.10) 

a result which indeed coincides with the PY equation 
(4.8) when g is approximated by the pair Boltzmann 
factor e~^. 

The linearized Debye-Hiickel equation can be se
quentially corrected in a number of ways to approach 
the exact pair distribution. Consistent with the tech
nique we have here developed, an asymptotic expansion 
in the range of force would be called for, with the inser
tion method correcting for the intense short-range forces. 
For this purpose, one may use the standard diagram
matic expansion12 of c in potential bonds .(—£0) and 
vertex contributions p, allowing only connected dia
grams which do not decompose on excision of a vertex. 
For very long-range forces, a suitable ordering param
eter13 is the number of links minus number of vertices, 
starting with the lowest possible value of —1, and ex
plicitly summing each order of diagrams. This yields 
the series, in condensed notation, 

c(12,0)=-/fy(12)+[i*o(12,0)2 

•[* / • 
+ |Ao(12,4>)3+p(/z0(1.2,4>) / *o(13^)*Ao(32^)i3 

+ I P 2 f /"^o(13^)/?o(14^)A0(23^) 

X /*o(24,0) ka(3i,ct>) d3di\+ • • •, (4.11) 

where ho=g0— 1 is the solution of (4.4): 

M*)=-i8to/( l+AS0k). (4-12) 

Alternatively, (4.11) can be inverted to read 

00(12) = -C(12,tf,)+B/K12,<»)2] 

+ 

+ 

\\h(\2,4>y+ph{n,4>) f h(l3,<f,)2h(32,<j>)d3 

iv/'/'*(13,0)A(14)*)A(23,0) 

X A(24,*)ft(34,*)<*3<*4]+ • •' • (4.13) 

Choosing the direct relation (4.11), the next order cor-

12 See, e.g., J. E. Mayer and M. G. Mayer, Statistical Mechanics 
(John Wiley & Sons, Inc., New York, 1940), Chap. 13. 

13 D. L. Bowers and E. E. Salpeter, Phys. Rev. 119,.U80 (1960). 
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rection to (4.7) becomes 

^ r ) = ~ ^ ( r ) ~ ^ ( r ) + p o ( r ; 0 + ^ ) 2
7 (4.14) 

where r>a: <//(r) = 0, r<a: g(r) = 0, and one may con
tinue in this fashion. 

I t is to be noted that whereas (4.7) states that c(r) = 0 
outside the range of force, (4.14) suggests [and its 
analog using (4.13) demands] that 

J . K. P E R C U S A N D G. J . Y E V I C K 

from which it follows that 

( 5 + p ^ ) * [ 5 + p ( g 0 - l ) ] = 5 . (5.6) 

Here we have used the convolution notation 

> - / . (a*b)(t)= a(i-t')b(r')dt'. (5.7) 

fW = I C g ( r ) - l ] 2 , (4.15) 

which can lead to quite different results in transition 
regions. The result (4.15) also happens to be false in the 
solvable case of one-dimensional hard spheres where 
there is of course no transition. 

V. HARD-CORE PERTURBATION EXPANSIONS 

Let us examine the Debye-Hiikel based set (4.7) in 
further detail. To do so most effectively, it is best 
written as a single equation. From (4.5) it is clear that 
the difference g=c remains continuous and even dif
ferentiate 'in the face of discontinuities in g and c. 
Therefore we consider the combination 

r ( r ) sg( r ) -< ; ( r ) - / fy ( r ) , (51) 

which, from (4.7), coincides with g outside the core and 
extends it inside. If we further introduce the Mayer / 
function for the core 

/(r) = e r ^ h o ( D _ 1 = = _ 1 > r < a 

= 0, r>ay 

(5.2) 

Thus, applying [5+p(go— 1)]* to (5.4) yields 

r = go+p(/r )*[go- 1 + r - l + p ( r - l ) * (g 0 - D ] 

+ p ( / r ) * [ / r + p ( / r ) * ( g o - D ] ; (5.8) 

and so, on iteration, 

r = go+p(/go)*[2(£o-l) 

+ p ( f o - l ) * ( g o - l ) ] + - - - . (5.9) 

We can now ask for the modified equation of state due 
to the hard-core influence, regarding / as a perturba
tion. A particularly effective method for obtaining this 
from any approximation to g is by the Ornstein-
Zernike compressibility relation14 

P / ( * - l ) ( r ) A = dp/dpp-1. (5.10) 

Multiplying (5.9) by p ( l + / ) and retaining first order 
i n / , 

(5.3) 

it is seen that, again from (4.7), 

g(r) = [ l + / ( r ) > ( r ) , 

c(r) = / ( r ) ( r ) - /3r ( r ) . 

Substituting (5.3) into (4.5) and separating powers of / , 

( T - l ) ( r ) + p / ^ ( r - r ' ) ( r - l ) ( r ' ) r f r ' 

Pig-1) = P f e - l )+p(/go)*(5+p(go-1)* 

X ( 8 + p ( g o - D ) + - (5.11) 

or integrating over all space, 

dp dp dp 

df3p{ df3p d(3p{ 

The reciprocal of (5.12), 

d/3p dppo 

f *o(r)dr+-- .~ | . (5.12) 
J r<a -J 0 J r<a 

= -ftfr(r)+p / ( r - r ' ) r ( f - r ' ) ( r - l ) ( r ' ) * ' 
go(r)dr- (5.13) 

- p f(r-r')r(r-r'W(r')dr' 

+PJ / ( r - r ' ) r ( r - r ' ) / ( r ' ) r ( r ' ) r f r ' , (5.4) 

the desired single equation. 
With the aim of iterating (5.4) in an / series, we must 

solve for r—1 on its left-hand side. This is done by 
observing again from (4.5) and (4.6) that the coreless 
distribution is given by 

then integrates at once to the modified equation 

Pp=Ppo+(—J / / k l n ( l + M k ) d k + • • •. (5.14) 

Of course, it is clear that the replacement of — &4> by 
f<f> = e~fi<t>—li as in (4.10), results in precisely the same 
replacement throughout the preceding. 

For dfip/dp not far from unity, an additional order of 
accuracy in this difference is obtainable with no addi
tional effort. We first observe, from (4.5), that (5.10) 

o - l ) k = - / W ( l + f t > * k ) , (5.5) 14 See Ref. 8. 
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also implies 

f dfip 
o / c(r)dr= 1. 

dp 
(5.15) 

Hence, r of (5.1) satisfies 

• / 
P [ r(r)-g0(r)]rfr 

/dp 

\dpp 

dPp\ ( dp 
• 2 + — ) - ( 

dp I \ 3/3*0 
2 + ~ ) dp I \dppo dp 

But then from (5.9) we have immediately 

(5.16) 

JY dp y w y T _ \( dp y / 
L\a/3 /̂ V 3p / J L\a/j/>o/ \ 

- | 7 g„(r)A~|[7-
Ly r < a J L \ 

3p_y 
5|8po/ 

a/?Mh2 

• ' > • • • 

(5.17) 

which indeed determines dfip/dp to one higher (mixed) 
order. 

Proceeding to the opposite extreme, that in which 
only hard cores are present, one may test the adequacy 
of the present approach by making an expansion of g 
or c, and consequently of p, in powers of density. To this 
end, the various truncations based upon (4.11) or (4.13) 
may be employed, or their modifications with f(r]<j>) 
instead of 0 entering. The common zero-order trunca
tion (4.7) leads, as we know, to the hard-core PY equa
tion, with exact first three virial coefficients and very 
accurate fourth and fifth. For the next stage, the first-
order / expansion corresponding to (4.11) and (4.13) 
becomes 

c(12;0) = / ( 1 2 ; 0 ) + i C g o ( 1 2 ; 0 ) - l - / ( 1 2 ; * ) ] 2 

+ / ( 1 2 ; * ) [ g : ( 1 2 ; 0 ) - l - / ( 1 2 ; 0 ) ] + . . . > 

(5.18) 
/ (12;*) = C ( 1 2 ; 0 ) - i C g ( 1 2 ; 0 - l - ( ; ( 1 2 ^ ) ] * 

- c ( 1 2 ; 0 ) ^ ( 1 2 ; 0 ) - l - c ( 1 2 ; 0 ) ] + - . . , 

where g0 requires / to replace —fief) in (4.11). Thus, for 
hard cores, instead of (4.14), 

r<a: g(r) = 0 , 

r>a: c{t)-~hlgir)-\-c{x)J 

- c ( r ) [ g ( r ) - l - C ( r ) ] = 0 , (5.19) 

which may be coupled, using the hard-core / , to read 

( l - r ) C = / + l ( l - / ) r 2 , (5.20) 

where r=g—c— 1 or T=pc*(r+c). A virial expansion 
of r can now be carried out; it appears that, e.g., the 
fourth virial coefficient is not correctly reproduced until 
one order above the truncation (5.18) is employed. 

VI. GENERALIZATION 

One is not compelled to use the microscopic restric
tion (3.7) to simulate hard-core interactions. Indeed, 
since p 2 >0, the vanishing of the mean pair distribution 
(3.S) is clearly sufficient to ensure that two particles 
never penetrate into a prohibited region. Thus, it is 
sufficient to reduce the equivalence of (3.4) and (3.7) 
to that of (3.3) and 

/ P2(x,y)W(x-y)dxdf=(E W(x<-xy)> = 0 (6.1) 

for W defined as in (3.6). Condition (6.1), interpreted 
as a supplementary condition or distribution, wave 
function, on density matrix, is universally applicable to 
representing the hard-core restriction. 

Consider, for example, quantum statistical mechanics. 
This may be described by the minimum principle of 
free energy15 

F=U-TS 
= Min r(Trr#+(l//3) TrP l n r ] , (6.2) 

with T r r = 1 and r the iV-body density matrix, since ap
pending T r r = 1 by a Lagrange parameter: X(Trr—1), 
leads directly to 

r = «H»7Tr*-rf«, X = F - l / j 8 
(6.3) 

Suppose now that we further append the restriction 
(6.1) in the form 

T r I W = 0 , 
(6.4) 

by means of a Lagrange parameter s T r l W . Equation 
(6.2) instead becomes 

F=Min r CTr r ( f f+* , )+ ( l / j 8 ) T r r l n r ] 

with T r r = l , T r I W = 0 , where ^ ^ i Z ^ ^ f e - X y ; ) , 
<t>'(x) — sW(x). If an approximate minimization is carried 
out, resulting in approximate reduced density matrices 
so designated again by bars, one will again be unable to 
satisfy T r I W = 0 merely by suitable choice of s unless 
W has a specific and generally unique form determined 
by the approximation. Hence (3.16) for an internal po
tential <3> generalizes immediately to 

(xix2|r2|xix2), *+*hc = <XiX2| r 2 | x iX 2 )^ + ^, (6.6) 

where (x ix 2 | r 2 | x ix 2 )=0 for | x i—x 2 | <a and 0'(x)>O 
for x<a, 0'(x) = O for %>a. Here T2 is the two-body 

15 See, e.g., Ref. 6, p. 105. 
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reduced density matrix: Hamiltonian takes the form 

< E / f t i ) ) = Tri,2/(l,2)r2(l,2). (6.7) 

Special cases of (6.6) abound. It applies to quantum 
mechanical ground states, and for that matter extends 
to excited states as well, and even (suitably modified) to 
dynamics. It reduces in the classical equilibrium limit 
to (3.16), and shows that with external forces, the only 
required modification is that one should not reduce 
g(xi,x2) = p2(xi,X2)/p(xi)p(x2) to its translationally in
variant relative coordinate form. The manner of deriva
tion of (6.6) also suggests further generalization, for 
example, to mixtures. In this case, particles of type p, 
and type v cannot penetrate more closely than some aM„, 
which if classical hard cores were involved, would 
necessarily have the form avlv=^(alt+av). Clearly, (6.6) 
now requires 

(x1px2v I T21 XHJ,X2V) = 0 for | Xi—x21 < a^ (6.8) 

and (j>/
liv(x)>0 for %<am c/)f

lxv(x)==0 for x>aMJ,. For 
instance, using the classical linearized Debye-Htickel 
approximation, 

, ( X i X 2 ) = - - j 8 0 M , ( X i X 2 ) , 

where 

gMV(xiX2) - <5M„=c (̂xix2) 

+ Z x / cMx(xiX3)px(x3)(gx,(x2X3)-5x,)^X3 (6.9) 

and gM,(xiX2)=p2ju,(xiX2)/pM(xi)pM(x2), Eq. (4.7) be
comes, for mixtures, 

cM„(xiX2) = — /30M„(xiX2) for r12> a^ 

^(xix2) = 0 for r i2<^. . 
(6.10) 

For pure hard cores, this reduces to the PY equation 
for mixtures, and has recently been solved.16 

VII. BOSON GROUND STATE 

As an application of (6.6) to the quantum mechanical 
domain, let us examine the case of a Bose system at zero 
temperature—the ground state—interacting via both 
weak long-range and hard-core forces. We must first 
devise a suitable long-range approximation, and for this 
will choose what is effectively an extended linearized 
Debye-Hlickel approximation. As one of numerous ways 
of deriving this approximation,17 let us choose an ap
proach used by Zilsel.18 

In second quantization, the standard many-boson 

16 J. L. Lebowitz, Phys. Rev. 133, A895 (1964). 
17 See, e.g., J. K. Percus, editor, Many-Body Problem (John 

Wiley & Sons, Inc., New York, 1963), Chap. XIII. 
18 P. R. Zilsel in Ref. 17, Chap. XXVI. 

H=(h2/2m) / V^*(x)-ViKx)dx 

0(x-y)**(x)**(y)*(x)<fcdy (7.1) 

with only ftKx),^*(y)]=5(x—y) nonvanishing. We can 
then transform to new variables, at least formally, 

^(x) = ^ ( x ) / V / 2 ( x ) , ^ ( x j ^ p i / a ^ y iir(x)/h (7.2) 

where only |jr(x),p(y)] = 5(x--y)5^0, in terms of which 
(7.1) becomes 

H= -ft 
2m J L 

p(x)W(x)-W(x) 

1 1 
+-h2 Vp(x)-VP(x) 

4 P(X) 
dx+-

2 
«(x-y) 

X[p(x)p(y)-p(x)5(x-y)]^x^y+const. (7.3) 

For weak long-range forces, we neglect the fluctua
tions of the density and thus write p(x) = p, the mean 
density, in the kinetic energy coefficients. The Fourier 
transformation 

(7.4) 
p(x) = (1/F)E Pk^k*x, [^k,pi]= 5U 

*•(*)= X>k£r<k'x, 

then diagonalizes the Hamiltonian, and we find 

H= L(^2/2m)7rk7r_k+E(^^2/8w7V)pkp_k 

+L(l/2F)0kPkp_k+const, (7.5) 

a set of uncoupled harmonic oscillators. 
Since the radial distribution Fourier coefficients are 

readily shown to be 

g k =(l /p^)(p k P _ k - l ) , (7.6) 

a direct evaluation in the ground state of (7.5) yields 

2p0k 
«k ( * ) =;h fi2k2/2mJ 

•1 (7.7) 

Thus, taking advantage of (6.6) and the fact that the 
coordinate diagonal elements of F2 precisely constitute 
the pair distribution p2=p2g, we can add a hard core to 
4> and obtain the approximation for the Bose ground 
state 

l+Pgk=[l+(4wp/^2)(<^k+^k)]-1 /2 , (7.8) 

where <//(r) = 0 for r>a. In the absence of a long-range 
force at all, this generalizes the classical PY equation, 
and is strongly suggested by Ref. 19. However, the full 
consequences of (7.8) remain to be delineated. 

19 J. K. Percus and G. J. Yevick in Ref. 17, Chap. XVIII. 


